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Abstract-A perturbation technique developed by Karihaloo el al. is employed to obtain the stress
intensity factors at the tip of a kinking crack that emanates from the free surface of a beam under
pure bending. Under the condition that the kink extends in the direction of vanishing KII the crack
path is obtained as well as a path stability condition. From conditions on K1 a material parameter
r· akin to that of Ramulu and Kobayashi's r, is obtained. By analysis of the slope of the kinking
crack a stability condition is obtained corroborating the stability condition from consideration of
vanishing KII • It is shown that for a beam in pure bending the nonsingular remote stress term T
must be greater than some positive critical value for kinking to occur confirming the results of Sayir
and Schindler.

INTRODUCTION

In the last decade several papers were published dealing with dynamic crack propagation
in beam bending dealing with several aspects of the problem[I-7]. The phenomenon of
crack turning and/or bifurcation in such a problem is well known having been observed by
Bodner[8] and reported as early as 1972. In their study, Kinra and Kolsky[1] observed
definite stages of crack propagation, the first being a fast increase of the crack velocity to
some constant value then a marked decrease in the velocity at about 70-80% of the beam
height. The next stage was a turn out of plane by the crack characterized by a crack velocity
that was much smaller than the one in the first stage. Freund and Herrmann[2] and Adeli
el a/.[3] proposed a beam bending model to explain the first stage of crack propagation.
Levy and Herrmann[4, 5] improved on that model by improving the fracture model used
in [3] and by including the effects of rotary inertia and shear, thus making the model fit the
experimental results in [I] in a better qualitative manner. Schindler and Sayir[6,7] inves
tigated the stability of the crack path in the beam, obtaining a criterion on the induced
loading P for determining when the path would become unstable (i.e. the crack would
deviate from its original straight path) based on a fracture model similar to that used by
Levy and Herrmann[4]. Streit and Finnie[9] in their experimental analysis of double
cantilever-beam, compact-tension and center-crack specimen derived a material parameter
that characterized the directional stability of the crack and related it to the constant term
in the Williams[IO] crack-tip stress series. Ramulu el a/.[ll, 12] in their work on dynamic
crack propagation in pipes expanded on this idea and derived a parameter which also
included the velocity of the crack.

In order to explain the second stage of fracture in a beam in bending, the authors have
employed a perturbation technique discussed recently in p.apers by Cottrell and Rice[13]
and Karihaloo et al.[14] which is based on the works of Banichuk[15], and Goldstein and
Salganik[16]. The approach is quasistatic, since the crack velocity effect is small in the
second stage. Though the method was employed for cracks that were semi-infinite in an
infinite medium[13, 15, 16] or finite cracks in an infinite medium[14], it is hereby extended
to a crack emanating from a free surface via the work of Hartranft and Sih[l7]. The
equations obtained are similar to those in [14] and are used to define the path of the kinking
crack. It is shown that as the crack moves away from the free surface the non-singular term,
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T, in the Williams expansions[lO] changes sign, from negative to positive, leading to path
instability. One by-product of the method is a parameter, r*, similar to the parameters !lac
(Schindler and Sayir[6, 7]), rc (Streit and Finnie[9], Ramulu et al.[1I, 12]) and CXo (Eftis et
al.[18]) found by previous investigators. The term in [14] that leads to this term appears to
be unaccounted for in their final calculations.

In order to solve the problem at hand we will give a short recap of the perturbation
method as given in [14] and show how it must be modified to account for the free surface.
Next the resulting integral equation will be solved for the stress intensity factors, K) and
KII . Applying the condition of crack propagation in the vanishing KII direction will lead to
the determination of the crack kinking path and the stability condition. The parameter r*
will then be obtained by defining an equivalent straight kink and this parameter will be
compared to Ramulu et al. 's[19] value of rC' Finally the stability condition will be discussed
from the points of view of the vanishing KII condition and on geometrical grounds based
on the slope of the kink both leading to conditions on the non-singular remote stress
term T.

THE MATHEMATICAL MODEL

In our description of the crack and the equations used, we will follow the convention
in [14]. We consider the problem of a crack emanating from the free surface of a beam
under remote pure bending as shown in Fig. 1 where the straight and the curved portions
represent the initially long crack and its extension. The deviation of the crack from the x-
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Fig. I. Kinking crack in a beam under pure bending-with detail of kinking crack geometry.



Kinking of a crack in a beam under pure bending 1527

axis is defined by A(x) which is assumed to be small, relative to its extended length. The
crack is assumed to be opened by surface normal and shear tractions T. and T.. which are
necessary to remove the external tractions shown in Fig. 1.

We assume such a crack growth (/3 ::/= 0) as an outcome of the possible nonalignment
of the loading system (pure bending is achieved via four-point bending and one of the loads
may not have been properly aligned) or the crack may not have been inserted initially
perpendicular to the free surface.

As a prelude to the solution of our problem we solve a new problem depicted in Fig.
2, namely a finite crack in an infinite body antisymmetric with respect to the coordinate y.
The problem is approached in this manner, since the solution of our problem may be
derived from the solution of the new problem and since this will allow us to easily discern
the effect of the free surface. Following [13], the stress field is obtained via stress functions
<j>(z) and t/I(z) by means of Mushkelishvili's method[20]

(1)

where

z = x+iy, i = J=l, <p(i) = <j>(z) and Yi(i) = t/I(z).

The boundary condition on the crack is in the form

(2)

where e is the angle made by the crack with the x-axis (8 = N(x) « 1). In this problem,
because of the symmetry in the stress field, viz. O'm.(z) = O'm.( -z), this implies that
<j>(z) = <j>( -z) and t/I(z) = t/I( -z).

Introducing the analytic function

(3)

we obtain from (2)

(4)

A general overview of the perturbation scheme in [13] and found in more detail in [14] will
be given. The reader is directed to these references for a more detailed description. We
assume that there are two functions F(z) and W(z) corresponding to <j>(z) and Q(z) whose
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Fig. 2. Antisymmetric crack geometry in an infinite body.
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boundary values are F±(f) and W± on the upper and lower surfaces of a straight cut located
on the x-axis and in between the crack tips. The functions cjJ(z) and Q(z) have their cut
along the actual crack. The functions F(z) and W(z) can be written as follows retaining
terms up to second order

2

F(z) = L fj(z)+0(A 3
)

j= 0

2

W(z) = L ~(Z)+0(A3)
j=O

(5)

where the Fj(z) and ~(z) are O(N). It is assumed that these functions can be analytically
continued to the faces of the actual crack. On the surfaces of the actual crack (z = t+iA(t»
cjJ±(z) and Q±(z) can be expressed in tenns of Fl(t), Wl(t) and their derivatives via a
Taylor expansion in t using iA(t) as the small parameter. For small A

(6)

Employing (6) and the expansions for cjJ±(z) and Q±(z) in (4) one obtains an equation for
Tn-iTs in terms of A, Fl(t), Wl(t) and their derivatives. It was shown in [13] that the
angle of the kinked extension was proportional to the ratio of the stress intensity factors
KI//KJ• As in [14] for the slightly deviated extension it is assumed that Ts is O(A I). This will
then allow for the ordering of the tenns of the expansions after their substitution in eqn (4)
as follows:

(7)

A2
: Ff(t)+ WI(t) = -iA[Fr(t)+ Wf(t)]' -2i{A[Ff(t)- Wf(t)]}'

+ 1A 2[F~ (t) + Wg' (t)]" + 2[A 2Fg' '(t)]' - 2A' {A[Fg' (t) - Wg' (t)]}' - 2AA'Fg" (t). (9)

The solution of (7) as given by [20] via the boundary values of [Fo(t)± Wo(t)] yields, with
a = L+l,

I fa (a 2 - t 2
) 1/2

Fo(z) = WO(Z) = 2 (2 2) 1/2 Tn dt.
rt z - a -a {- Z

The solution of (8) via its boundary values is

and the solution of (9) via its boundary values is

(10)

(1 I)

as shown in [14].
Because of the symmetry condition on cjJ(z) and Q(z) (hence on the Fj(z) and ~(z)'s)
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one obtains, if it is assumed that T. and T, are symmetric and A is antisymmetric in t,

1 fa (a 2- t2)1/2
Fo(-z)=Wo(-Z)=2(2 2)1/2 -T" dt;

1t Z -a -a t+z

F2(-z)+ W2(-z) = 2 ( 2~ 2)1/2fa -[2(AT,)'+2NT,
7t Z a -a

( 2 t2)112
+4(A2T')'+A2T"] a - dt.

• • t+z

1529

(13)

These results can be obtained by inspection from (10)-(12) if one realizes that the same
problem is solved when the axes are rotated 1800 (defining the -z coordinate system). The
only difference is that the upper face of the crack in the z coordinate system is the lower
face of the crack in the - z coordinate system and vice versa. Now the tractions on the
upper face in the z system are the negative of the tractions on the upper face of the - z
system, hence the sign change. The condition that T. and T, are symmetric in t is due to
the loading conditions at infinity and the condition that the deviation of the crack from the
x-axis is small.

If new functions Uj(z) and ~(z) are defined as

Uj(z) = ![.fj(z)+.fj ( -z)]

Vj(z) = H.fj(z)+.fj ( -z)]

under the conditions that T"(t) = T.( - t) and T,(t) = T,( - t) then

2z fa T.(a 2- t2)1/2
UO(Z) = VO(Z) = 2 (2 2)1/2 2 2 dt;

7t Z -a 0 t-z

2z fa. , (a 2
- t2) 1/2

UI(Z) = VI(Z) = 2 (2 2)1/2 -/(Ts+AT.) 2 2 dt;
7t Z -a 0 t -z

2z fa
U2(z)+ V2(z) = 2 (2 2)1/2 [2(ATs)' +2NTs

1t Z -a 0

( 2 /2)1/2

+4(A2T')'+A2T"]~=--dt
• "t2 _ Z2 •

(14)

At a point t = a+ r, the functions F(z) and W(z) are single-valued. Since A(a) = 0 then
A(a+r) = N(a)r = wr. Thus at such a point (1ww and (1,w may be obtained from (7)-(9)
and (14).

Now for z = t+iA(t) as z approaches a, one can define

(15)

where
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(17)

Thus this is the solution for K1 and KII for a finite crack in an infinite body that simul
taneously kinks at both ends of the straight crack in an antisymmetric way as given in
Fig. 2. To find the solution for a crack of the type shown in Fig. 1, we need only to
remember that since Til and T, are symmetric in t and A is antisymmetric in t then
ql(l +w")1/4 and qll(l +W 2)1!4 are symmetric functions of t. Also the integral in (15) may
be viewed as an equivalent system of a straight crack between x = a and x = -a having
symmetric loads ql(l +W2)114 and qll(l +W2)114. If so, Hartranft and Sih[l7] have shown
that knowledge of the solution for a straight crack in an infinite medium leads directly to
the solution of a straight crack emanating from a free surface via

(18)

with

and (f and r being symmetric normal and shear tractions. Hence eqn (18) with a and r given
by (I +W 2)1/4 times eqns (16) and (17) yields the stress intensity factors for a straight crack
emanating from a free surface that kinks as shown in Fig. I.

From this point on the solution of the problem follows closely that found in (14]. Let
Land 1 be the projections on the x-axis of the pre-existing crack (length Lo) and the
extension (see Fig. I). Letting t = a-I+ r, we assume the crack path may be described by

where

{
h(r)-h(f)

A/-A.r-() - () - -(J(L+r) = -(J(a-I+r)

(J = h(f)IL.

O<r~1

-I ~ r ~ 0
( 19)

(20)

(21)

Even though A(t) is antisymmetric in t, the patch function h in terms of the variable t is
not. Hence any function in powers of r 1/2 may be used. Equation (20) is basically in the
form of the solution obtained in [13] for a kink propagating from a semi-infinite crack in
an infinite medium and is the same as eqn (24) in [14]. The coefficients IX, ,." Xare constants
to be determined.

We integrate eqn (18) by parts and use Taylor's expansion on (I +W 2)1/4. We next
substitute for a = L+/, (a- t) = I-r and (a+t) = 2L+I+r. We then expand (L+f)1/2 and
(2L+I+r)1/2 in terms of rlL and IlL and assume that IlL is a small quantity of the same
order as ),11. By keeping terms up to second order the following is obtained

} dr Af' Tn ~ Af' Tnx{1 +/ -- - - -(I +f)y/-r dr + - -2 (1 +f)
~ 7t -L 4L 7t -L 32L
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x(5/+3r)~dr- ~ rl

T.[X-~W--).-J[l+f]~
~"it J-L 2 2(/-r) ~

Afl {3 5). 2 } f' dr J2 fl dr
- - Tn -w).+6U' + - - -- - - T).,J'-- (22a)

7t -L 2 2 /-r~ 7t -L ~'

K" ~ -.ft.LT.[~ -.' -2(LJI' +f1Ji=; -.ft.L~i

X[~-).'+2(i~rJ[I+f]~dr-AfL T.[l+f]

X [ 1+ I;;] Ji=; + .ft.LT.if'[ 1 +I~]Ji=; (22b)

(23)

f = 0.374.('~r) {1 + o(i/L)}

I
f' = 1: {-0.374· (1 +O(//L»}

f" = ~2 • { - 1.9804(I +0(//L))}.

The primes in these equations denote differentiation with respect to r andJ,f',f" are given
by

The underlined term in (22a) is significant to the analysis and is discussed later in the text.
To simplify eqns (22), we resolve the component of the tractions Tn and T. in the

directions of the x- and y-axes and employ the small angle formulas, noting that
A'(t) = ).'(r), to obtain

(24)
Tn = (1-).'2)O'yy+X20'xx+2).'O'Xy+0().3)

T. = (O"yy -O'xx)A' + (1-2X 2)O"xy+0().3).

In the case of crack extension the stresses on the boundary of the pre-existing crack
are zero. This simplifies the integrals so that the lower limits are no longer r = - L but
r = O. Note that by settingJ, f',j" equal to zero we obtain eqns similar to eqns (31) and
(32) of [14]. They are not exactly the same due to the definition of L and the location of

Ja+ t in the integrand. The stresses on the extended portion may be obtained from the
stress field that exists along the prolongation of the pre-existing crack tip [15]. In the r, h
coordinate system the stresses on the curved extension may be expressed by:

o h2 02

O"mn(r,h) = O'mn(r,O)+h oyO'mn(r,O) +"2 oy20"mn(r,0)+0(h3) m,n = x,y. (25)

By employing the asymptotic expansions for the stress field together with its y-derivatives
near the tip of the main crack, one finds that since the Bj ~ o(kj / L) and Ku is O(),), then

-kJ ( 9 h2
) 3 ku (h) ~ 3O"xAr,h) = -- 1-- 2 + - -- - -T-BJ - + O()' );..j2ro- 8 r 2.JiiU' r 27t

-k. ( 3 h2
) 1 kll (h) ~ 3O"yy(r,h)=-- 1+- 2 ---- - -BJ -+O()');..j2ro- 8 r 2.ji.;; r 27t

-kJ (h P) ku ~ h ~ 30"xir, h) = -- - + - - -- + Tp +BJ - - - BII - + O()' ).
.ji.;; 2r 2.ji.;; 27t 2r 27t

(26)
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The derivation of (26) is found in the Appendix of [14]. For the case of a moment on the
crack a term linear in r also arises; however since we only keep terms to 0 (j;-) it does not
affect the computations. In these equations k), k ll are the Mode I and II stress intensity
factors of the main crack (in Fig. I), T is the non-singular constant term and BI, 8" arc the

coefficients proportional to Jr in the Irwin-Williams expansions(lO]. Again terms up to
second order in ). are kept, consistent with the previous derivations. In these equations, fl,
given by (21), is assumed to be of second order in }./I, i.e.

By substituting (26) into (24), T. and T. are obtained. These are then substituted into (22)
along with the definition of). [from (19) and (20)] and w( = N(a) = h'e£)). The resulting
expressions define the stress intensity factors at the end of the kink (KJ, KII ) as functions of
kh k ll , T, BI. BII , <X, 11, X. Thus

3 1~ } {( 9 [39 6J 2 I)--k l l1<xtanh- yl-r*/I+'" +1 k I --X<X- --- 11 +-
2n 4 32 n 8L

312{ (I 9) (2 ([39n J2 ) 3+1 k l 2n -4 l1X+V-:;T 16"-4 11 +7<XX - 2n kIl1X

x tanh- 1 JI-r*/I+ .. .}+{0.187k l f + .. ,}+O(p); (27a)

All terms kept are of zeroth, first or second order in I/L. The terms involving tanh - I

JI-r*/I result from the underlined term in eqn (213) and was not accounted for in eqn (35)
of (14]. This term is not integrable at r = 0 but may be integrated up to a value of r = r*.
Since the stresses as defined in [10] or [18] involve a singularity, they will represent the
actual stresses only in the vicinity of the crack and not at the tip. Thus the distance r* can
define the distance ahead of the main crack after which the stresses are actually represented
by the Williams expansions. One may also look upon r* as a distance where fracture initiates
ahead of the crack[9] or a zone where voids and micro cracks grow and coalesce and, if the
right conditions exist, can divert the crack trom its original path[6, 7, 11, 12]. Thus r* may
be viewed in the same manner as tJ.ac in [7], <xo in [18] and rein [9, II, 12]. The quanti ty r* /I
will be obtained from the ordering scheme.

Aside from the JI-r*/I terms and the terms due to the free surface (terms involving
the coefficient 0.187), eqns (27) are similar to (35) and (36) in [14]. Some of the differences
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in the equations are due to Land j;+i as discussed previously and some are due to
algebraic errors in [14].

If tx, fl, X in (27) are set equal to zero then

kJ / BJ/ / 2
K J = k] +"8 Z + 2"" + 0.187 Zk l +O(l)

and as in [14] we can identify the crack extension change (as /-+ 0) of K1 and KII as

~ B1 0 187 kl = I' Kj-k l = ok,
8L + 2 +. L LtlJ / - oLo

k ll BII 0.187kll _ I' KII-k ll _ okll

8L + 2 + L - LtlJ / - oLo•

(28)

(29)

(3Ia)

The values for okj/oLocan be obtained via the boundary conditions thus enabling eqns (27)
to be wri tten as

3 I~ } {OkJ ((9) [39 6J 2)- -k1tTtX tanh- V I-r-l/+ ... +/ - - kJ - Xtx+ - - - fl
21t oLo 4 32 1t

As in [13,14] we assume that crack extension will be in the direction of KII = O. Thus from
(30b) the coefficients of the powers of / must be set to zero yielding

ex ~ -2kll /k1

8 (2)1/2
fl ~ 3 1t exT/kJ

The same results found in [14]. However one also obtains from the /3/2 coefficient that

(31 b)



1534 C. LEVY and M. PERL

From (3Ia)2 either a or Tis zero or the term in the bracket is zero. The bracketed term set
to zero is tantamount to defining a stability of crack path condition. In [6,7) it is shown
that even for some values of T > 0 the path is still stable.

Even though these results are obtained for the crack emanating from a free surface,
multiplication of KJ and KJI by a dimensionless function of crack length will define the stress
intensity factors for a crack in a beam under pure bending. However eqns (31) will remain
unaffected (see Appendix).

Evaluation of r* /1
We now turn our attention to the evaluation of r*/I in (30a). To do this we must

remember that I/L was assumed to be of the same order as A/I. Because of this we can
approximate our continuously turning crack by a straight crack oflength Lo+e that grows
a straight kink of length 0 (see Fig. 3). It is assumed that the new approximation to our
crack has the same intersection points on the x-axis and forms the same angle w at P. If
one performs the algebra the following is obtained

CA e e I/L-P/w (I) 3

y= Lo~L= I+P/w ~ L +O(A)

PC_O_/(l-I/L)_/( I) 3
L - L= L cos w = L I - L +O()' ),

(32)

using the approximations for P= al/L+O(A 2) and w = h' (/). For the straight crack OC that
has deviated to point P we find that

KJ(P) = (I - ~(2)K,(C) - ~wKIJ(C)+fl[2A'W2T(C)J+0(O)

KIJ(P) = KIJ(C) + ~KJ(C)-fl[2AWT(C)J+0(O).
(33a)

These equations, which are similar to those in [6] with klJ = 0, are obtained via eqns (30)
replacing (J. by w+ P, setting I'J and X to zero and realizing that the k/s and T must be
replaced by their corresponding values at point C. Now by using the Taylor expansion on
K1(C), KJI(C) and T(C) in terms of their values at point A (via kj, k lJ , T) one will obtain

K,{P) = (1 - ~(2)kJ - ~Wkll+Jl[2AW2TJ+O(/)

KII(P) = klJ + W;l - Jl[2AWTJ+O(l)

Equations (30) may also be written in terms of was

(33b)

(34)

K 1 = (1 - ~(2)kJ - ~WkJl+JlU(~ - ~tanh-l~)+2lAW2T+0(/);

KII = klJ + W~I - Jl(2AWT)+O(/)
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where (31a)2 was substituted for" and (X2 ~ w 2+0(j"l). Since (33b) and (34) are identical
except for the underlined term, we set the term to zero yielding

'; = 1-[tanh(~)T ~0.243. (35)

Thus for a given value of IlL, one then obtains ,*IL which can be compared to experimental
values. It should be noted that since IlL is material, geometry and loading dependent so
must ,*IL.

COMPARISON OF r*jL WITH EXPERIMENTAL RESULTS

Even though a crack emanating from a free surface under a linearly varying far field
stress was investigated, the method may also be applied to different far field loading
conditions (e.g. a constant far field stress) provided one is careful about the terms kept in
the expansions. One will notice that to O(A. 2) the resulting equations for KI and KII are
basically the same as those found by [14], the free surface conditions only playing a role in
the redefinition of the k/s, B/s and iJkjliJLo's. As an outcome of this we can therefore
compare our results to those of Ramulu et al.[19], whose dynamic analysis was performed
on an SEN polycarbonate material under tension at essentially constant velocity.

Based on Fig. 3, we assume that we can model the turned crack by a straight kink
whose turning angle is w+ p. This angle is considered to be the branching angle 8e in Table
1 of [19], point P being any point on the branched crack so that IlL is small. Because we
are working with a branched crack k ll and Bu must be set to zero. By drawing a line between
point P and the crack intersection with the free surface (not the tip of the starter crack), we
can define the angle p. By using the definitions of pand w as functions of (A.ll) we find that

P=-l+~
2 '

and, by the small angle approximation for pnoting that elL is O(IIL)2, we obtain

(36)

(37)

This leads to IlL, and, when multiplied by '*11 from (35), yields '*IL. In this way we
may also obtain the predicted value of (x. The results are summarized in Table 1. As one
can see from the results, the predicted angles are in very good agreement with those found
from experimental observation within the experimental scatter indicated, the worst result
being the second entry where the starter crack was much smaller. We note that for almost
constant velocity the ratio of '*I'e (process zone as found from (35) to the critical material
parameter defined in [11, 12, 19]) is nearly a constant approximately equal to 3.7. The
reason for the difference between ,* and 'e is due to the static analysis of our investigation

'1

1------- L -----....-

~:__--..._:_--------+--_77'"----JC

Fig. 3. Equivalent straight kink for the kinking curve.
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Table J. Comparison of experimental data[I9) vs theoretical results

Branching angle n
Predicted

Test No.t Measuredt via eqn (37) elelt /IL fJ ',/Lt ,oIL '*/',

KB-820826-1 34 33.3 0.22 0.161 5.35° 0.00988 0.03906 3.952
KB-820816-2 22 18.9 0.23 0.223 4.22° 0.015 0.0541 3.608
KB·820822 29 26.9 0.23 0.183 4.9)0 0.012 0.0444 3.702
KB·820824 25 22.2 0.22 0.204 4.5r 0.014 0.0495 3.502

Average 25 0.23 3.691±7%

t Reference (I9}-the measured angle has a scatter of at least ± 12%.

and the dynamic investigation used for comparison. As shown in [12] the material parameter
at zero crack tip velocity is higher than that at a non·zero velocity as noted by this ratio.
The value of 3.7 is related to the velocity through the ratio of the static to the dynamic
stress intensity factor, the remote non-singular stress component T as well as the crack tip
velocity function(12]. It was quite fortuitous for us that these three parameters in these
experiments were nearly constant in order for this comparison to be made.

PREDICTION OF CRACK PATH STABILITY CONDITION

We now turn our attention to eqn (3Ib) and the crack path stability condition. If we
omit the 4(0.374) factor from the last term of the equation, the left-hand side of the equation
will be the coefficient of the /3/ 2 term of eqn (30b) for a finite kink emanating from a much
longer straight crack in an infinite medium. This equation may be used for the problem
studied in (14] provided kh kn and Tare properly defined. For the case studied in [14] and
using their notation

k) =umaxFLa, kn = -13k) = - i~kh T= (k-J)umax ' (38a)

Placing these into (31 b) without the 4(0.374) factor yields

T* = 0.384umax or k* = 1.3841101ox . (38b)

Thus for loadings in the direction of the crack greater than 1.3841101ax the crack will
turn. This is in physical agreement with the k( =R) values of the crack paths shown in [13].
This value of T* is also comparable to that found by Schindler and Sayir[7] via an energy
approach. Even though they were investigating crack path stability in a beam in bending
the crack geometry and near tip stress field employed there were basically the same as the
one employed here. Also the crack tip velocity effect on the stress intensity factors was
small at the point of path instability (crack speed/longitudinal wave speed, c/c\> is about
0.1).

If the free surface effect is included in the pure bending case, placing in (31 b)

k) = 1.1220"010'(1- :e)FLa, kn = -13k) and T= -1.122(1-2e)u01axo (39a)

which are obtained from (21] and the Williams expansion for the problem, yields

L*
e = e* = i = 0.65 and T* = 0.3370"01'" (39b)

This value of L~/b represents the location of the instability of the path, Lo and b
representing the crack length and depth of the beam respectively. The justification of this

formulation lies in the fact that for Lo/b = 0.51, TA/kJ = 0.032 which is in excellent
agreement with the finite element solution of Larson and Carlsson[22] ofan ASTM standard
bend specimen with Lo/b = 0.5.
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Thus it appears that the results of Cottrell and Rice[13] and Karihaloo el al.[14] on
the stability of the crack path are restrictive for our case and may be modified as shown
above. To verify this we need only look at the slope of the kink

(40)

The angle r:x may be viewed as a parameter that characterizes the inability to set up the
"perfect experiment", e.g. loads are located asymmetrically about the crack or where the
initial crack cannot be "grown" perfectly perpendicular to the free surface, giving rise to a
non-zero kll' Thus we may speak of the deviatoric behavior of the kink's slope from
straightness (given by h'(r) = 1X-f3 with respect to the x-y coordinate system) as unstable
if the slope continuously increases. This is the same as requiring that

Vr > O. (41)

If we only look at the ~ term, (41) would translate to the requirement that T> 0[13, 14].
However if we check the full inequality we find that for the beam in pure bending

IX' 4}2 ,r;'[-(l-2~)(1_ 4~)+ [2;{(1_2~)2_~(1_ 4~)}J > O. (42a)

(
4~)2 VLo 1t VLo 1t

1t 1-
1t

By setting the left-hand side of (42a) equal to zero there exists an r/Lovalue for which the
path will become stable and this value is found by setting the bracketed term equal to zero.
For the path to be unstable that implies that X (in (41» must be zero, requiring that as
a minimum ~ = ~* = Lo/b ~ 0.662 and that T* = -1.l22(1-2~)umax ~ 0.364umax. This
compares very well with Schindler and Sayir's values. Thus for values of! ~ ~ < 0.662 (or
values of 0 ~ T < 0.364umax) the crack path will still be stable for a crack past the centerline
of the beam.

Tfeqn (41) were applied to the case investigated in [14] then

(42b)

Thus T would have to be greater than zero for unstable extension as suggested by [13, 14]
and no value of r would cause the bracketted term to be zero or negative unless T itself
were less than zero. The latter condition is precisely what Ramulu et 01.[19] found for the
case of an SEN tension plate experiment. Thus this physical requirement on the slope
appears to corroborate the results of the stability condition given by (31 b) and further
extend it.

Another interesting aspect of eqn (41) is that it also predicts that for initially very long
cracks in a beam under bending, crack extension will be stable. It can be seen that for
~ > 1t/4, the bracketed term in (42a) can be made less than or equal to zero for proper
choice of r/Lo. This aspect is confirmed by experimentally,observed results for beams in
pure bending with very low bending moments or initially long cracks (i.e. Lo/b ~ I) [7,23].

CONCLUSIONS

By use of a perturbation technique on the Mushkelishvili stress functions, the stress
intensity factors for a crack emanating from a free surface and developing a kink were
obtained for the case of remote pure bending of a beam. It was shown that as in [14], the
crack path is dependent not only on the remote stress T, T = -1.122[1-2(Lo/b)]umax, and
on the derivatives of k" k ll with respect to the pre-existing length Lo but also implicitly

SAS 22/12-".
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upon the finite geometry correction. From the perturbation methodology a parameter r* //
was obtained-a parameter which defined the limits of the Williams' stress field expansions
and a necessary condition for crack curving. It was found to correlate well with available
experimental data. Also provided by the methodology was the condition for unstable crack
growth. It was shown that the Cottrell-Rice stability condition T> 0 was too restrictive
for the beam bending case and that corroboration of this result was provided by looking
at the deviation of the slope of the kink from straightness.

For the loading condition kll = 0 and okll/oLo :F 0 the path of the kink is found to be

{3r
2

[ 2]h(r) = - {3r + - I - -- +0(r 5
/
2

)

2Lo I _ 4e
1t

so that without an initial kink the crack may have a smooth curving path in a stress field
whose value ofku changes with distance from the crack tip. One sees this in the experimental
results of Kinra and Kolsky[l). For values of eclose to 1[/4 the change in slope is rather
abrupt appearing as if the crack took a sharp right angle tum, again as observed in [I].
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APPENDIX

Since it was assumed that the cut between x = 0 and x = a (Fig. I) represented the effective crack with
tractions QI(l+W2)11' and Qn(l+w2)'I., we can multiply the resulting stress intensity factors, eqn (27), by a
dimensionless function g(~), ~ being the crack length to beam height ratio, which represents the finite geometry
correction. Since each term on the right-hand side of (27) is multiplied by gW, only the k/s, B/s (hence iJk/liJLo's)
and T will be affected. However ratios of these quantities will not be affected. Thus (3Ia), and (3lah will be
unaffected.

Equation (3Ia)l will then become

x = lX[ I iJlCn + I alCn + 4(t)2 _1..g'W]
oew 2k;" aLo ~ aLo k; Lo gW

where

Since

then

XllCW = X= [eqn (3Ia)l]'

Similarly, the stability criterion will take the form

"[4(tI1C
1
)2 + I alCn + I a", _ 1+4(0.374) _ ~ 1. g'(~)] = O.
~ aLo 4k; aLo 16Lo 4 Lo g(~)

(AI)

(A2)

(A3)

(A4)

When (A2) is put in (A4) the resulting equation is identical to (3Ib). The outcome of these results is that the kink
path, to second order, is unaffected by the finite geometry corrections 1.22'g(~). Also rell, to first order, will not
be affected either. However the non-singular term T will be and it is necessary to evaluate 9 (~).

To obtain g(~) let us identify the material toughness, K1" to be IC, and define a hypothetical dimensionless
"starter" crack length ~I [2-5] so that

(A5)

Then

and

T= -J.l22(1-2~)g(~)O'ma.'

(A6)

(A7)

At the kink location, the global definition of T given by (A7) must be equal to the local definition of T, given
by (39a) in the text, requiring that

and

Te = 0.364O'm.. at ~ = ~e = 0.662.

The dimensionless length of the "starter" crack from (A6) must be

~I ~ 0.016.

(A8)

(A9)

(AJO)

This implies that if the bending moment causing fracture is reduced by one-half, the starter crack quadruples and,
for the same critical value of Te, the crack will kink farther into the beam at about ~ '"' 0.75. This is in very good
agreement with the results found in [7]. We may therefore conclude that the function g(~) only plays a part in
relating beam bending experiments with different values of O'm.. but does not actually playa role in defining T*.


